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Text Mining for Health Insurance 

• Risk Measurement 
• Underwriting 
• Pricing 

 

• Claims Management 
• Fraud detection 
• Claim approval 
• Case management 
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Sources of Text 

• Application Process 
• Application for insurance 
• Attending physician statements 
• Call center logs 

• Post Claim 
• Claim application 
• Attending physician statements 
• Adjuster notes 
• Call center logs 
• Other correspondence 
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Why Use Text Mining? 

• May contain information not available in structured data fields 

• May contain subjective data (eg, expert opinions) 

• May be an early indicator of severity 

– Lags in receiving treatment 

– Lags in receiving and processing bills 
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Case Study 
Overview 
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Project Overview 

• Workers compensation business 

• Medical only claims 

• 15 days from First Notice on Loss (FNOL) 

• For each claim predict likelihood that Total Claim Cost will exceed 
a specified threshold 
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Data Sources 
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Claimant: 

Age  Gender 

Zip Code SIC Code 

Marital status Tenure 

Injury: 

Loss date Report date 

Type of inj Body part 

Location Witnesses 

Medical Bills: 

Ambulance Inpatient 

Tests  Procedures 

Prescriptions Providers 

Text: 
Claim activity Equipment 

Inj description Occupation 

Claim adjuster notes 
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Case Study 
Text Mining 
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Modeling Approach 

1. Exploratory stage: 

a. Train models without any text mining 

b. Train models exclusively with text mining 

 

2. Intermediate stage: 

a. Apply text mining to predict residuals of non-text model 

 

3. Final model: 

a. Combine text and non-text predictors using the findings from Steps 1a and 2a 
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Text Mining Considerations 

1. Word frequencies 

2. Stemming 

3. Exclusion list 

4. Phrases 

5. Synonyms 

6. Negatives 

7. Singular value decomposition 
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1. Word Frequencies 

• Text mining for predictive modeling: 

– Identify words or phrases that occur frequently within the text 

– Test to see if any of these words or phrases are predictive of the event 
being modeled 

– Typically limit analysis to words whose frequency in the text exceeds a 
minimum amount (eg, is contained in at least 3% of all records) 
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Word Frequency Example 

Word % of Records 

Employee 62.3% 
Doctor 47.8% 
Back 23.0% 
Hand 17.2% 
Contact 14.1% 
Pay 11.8% 
Lift 8.7% 
Pain 7.6% 
Strain 5.5% 
Visit 4.2% 
Clinic 3.4% 
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2. Stemming 

• Reduce words to their roots so that related words are treated as the 
same 

• For example: 

– Investigate, investigated, investigation, investigator 

– Can all be stemmed to investigat and treated as the same word 
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3. Exclusion List 

• Common words that carry little meaning can be defined and excluded 
from the text mining analysis 

• For example: the, of, and are unlikely to provide predictive value 
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4. Phrases 

• Common phrases may be pre-specified by the user to consider as one 
string 

– Eg, lower back, lost time 

 

• N-grams: count frequency of every combination of N consecutive 
words 

– May be more effective to identify groups of words that appear together 
frequently even if not consecutively 
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5. Synonyms 

• Words with the same meaning can be considered as the same 

– Eg, doctor, dr, physician, gp 

– Eg, acetaminophen, Tylenol, APAP 

– Eg, return to work, rtw 
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6. Negatives 

• Should negatives be isolated? 

– Eg, no pain vs pain 

• Negatives may be difficult to identify: 

– MRI not required, no MRI required, does not need an MRI, no need for 
an MRI 

• The mention of a negative may imply concern 

• In this case study, negatives provided small amount of lift but not 
isolated for final model due to practical considerations 
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7. Singular Value Decomposition 

• Similar to Principal Components Analysis 

• Convert a vector of word counts into lower dimension while 
maximizing retention of info 

• In essence, a numeric summary of the observed word frequencies for 
a record 

• Drawback is lack of interpretability of results 

– End users may wish to understand which word is driving the risk 
assessment 
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Word Frequencies by Record 

Record Word1 Word2 Word50 Word10

0 

Word20

0 

Wordk 

100001 1 0 0 0 1 0 

100002 0 1 1 0 0 0 

100003 0 0 0 1 0 1 

100004 0 0 0 1 1 0 

100005 1 0 0 0 0 0 

100006 0 1 0 0 0 0 

100007 1 0 1 0 0 0 

100008 0 0 1 0 0 0 

100009 0 0 0 0 1 1 
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Singular Value Decomposition 

Record Val1 Val2 

100001 0.87 0.82 

100002 0.62 -0.55 

100003 -0.15 0.15 

100004 0.01 0.91 

100005 -0.67 -0.42 

100006 0.34 0.44 

100007 -0.77 -0.15 

100008 0.22 0.33 

100009 0.44 -0.74 

22 

SVD compresses k-dimensions (one 
per each word) to lower 
dimensionality (eg, 1, 2 or 3) 
 
The compression algorithm 
maximizes the information retained 
 
Each new dimension is a linear 
combination of the original k-
dimensions 
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Predicting Outcomes with Text 

• Predictor variables are the word frequencies 

– Or binary variables indicating presence of word 

• May be several hundreds or thousands of these 

• Select a subset to include in final model 

– Univariate analysis 

– CART 

– Stepwise regression 
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Stepwise Regression 

• Backward stepwise regression: 

– Build regression model with all variables 

– Remove the one var that results in least loss of fit 

– Continue until marginal decrease in fit > threshold 

• Forward stepwise regression: 

– Build regression model with one var with best fit 

– Add the one variable that results in most lift 

– Continue until marginal increase in lift < threshold 
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Case Study 
Results 
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Text Mining: Phrases Selected 
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Combined Text Only 

# Total Phrases 9 15 

# Phrases: Claims Mgmt Action 5 6 

# Phrases: Medical Procedures 2 2 

# Phrases: Injury Type 1 4 

# Phrases: Type of Medical 
Provider 

1 2 

# Phrases: Time reference 0 1 
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Model Evaluation 

• Measuring goodness of fit should be performed on out-of-sample data 

– Protects against overfit and ensures model is robust 

– For this project, 10% of data was held back 

 

• Measures for comparing goodness of fit include: 

– Gains or lift charts 

– Squared error 
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Cumulative Gains Chart - Baseline 
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Cumulative Gains Chart – No Text 
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Cumulative Gains Chart – Text Only 
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Cumulative Gains Chart – Combined 
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Case Study Findings 

•Text-only model slightly better than model without text 

•Combined (text and non-text) model performs best 

•Analyzing text can be simpler than summarizing medical bill 
transaction data 

•Text mining is easy to interpret: certain words or phrases are 
correlated with higher or lower risk 

•Text mining may provide extra lift for less experienced modelers 

– Adding additional strong predictors may compensate for 
other modeling deficiencies 
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Questions 
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